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Abstract

A control strategy is presented in this paper which is suitable for miniature hydrogen/air proton-exchange membrane (PEM) fuel cells.
The control approach is based on process modelling using fuzzy logic and tested using a PEM stack consisting of 15 cells with parallel
channels on the cathode side and a meander-shaped flow-field on the anode side. The active area per cell is 8 cm2. Commercially available
materials are used for the bipolar plates, gas diffusion layers and the membrane-electrode assembly (MEA). It is concluded from a simple
water balance model that water management at different temperatures can be achieved by controlling the air stoichiometry. This is achieved
by varying the fan voltage for the air supply of the PEM stack. A control strategy of the Takagi Sugeno Kang (TSK) type, based on fuzzy
logic, is presented. The TSK-type controller offers the advantage that the system output can be computed in an efficient way: the rule
consequents of the controller combine the system variables in linear equations. It is shown experimentally that drying out of the membrane
at high temperatures can be monitored by measuring the ac impedance of the fuel cell stack at a frequency of 1 kHz. Flooding of single
cells leads to an abrupt drop of the corresponding single-cell voltage. Therefore, the fuzzy rule base consists of the ac impedance at 1 kHz
and all single-cell voltages. The parameters of the fuzzy rule base are determined by plotting characteristic diagrams of the fuel cell stack
at constant temperatures. The fuel cell stack can be controlled atT = 60◦C up to a power level of 7.5 W. The fuel cell stack is controlled
successfully even when the external electric load changes. AtT = 65◦C, a maximum power level of 8 W is found. A decrease of the
maximum power level is observed for higher temperatures.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Miniature fuel cells are being developed at Fraunhofer ISE
as alternatives to rechargeable batteries, like e.g. lithium-ion
batteries, in portable electronic devices. In order to ensure
a reliable power source, a control scheme for the fuel cell
stack is needed. Especially, water and thermal management
of miniature proton-exchange membrane (PEM) fuel cells
are critical issues, which have to be addressed by the control
strategy.

An efficient control strategy for miniature PEM fuel cells
should be based on a minimum number of peripheral com-
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ponents. Humidifiers and water cooling devices cannot be
considered for a cost-effective, low-weight portable fuel cell
system. The diagnostics of the fuel cell stack should be based
on electrical measurements. These can be made more ac-
curately and are less prone to failure than sensors (e.g. hu-
midity sensors). The air supply for our miniature PEM fuel
cells is achieved by fans rather than pumps. Fans offer the
advantage of a lower power consumption in comparison to
pumps.

A model-based control strategy would be desirable, which
takes the transient response of the fuel cell to load changes
of the power consumer into account. Using such a control
strategy, the effort of adapting the parameters of the model
to the specific design of the fuel cell and the peripheral
components of the system could be minimised. We review
the state of model-based control strategies for PEM fuel cells
in Section 2.

In practice, problems during the operation of a portable
fuel cell system occur after a change of the power load of
the electronic device. Typically, the load changes on a time
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scale of milliseconds, followed by a peak power demand
for several seconds up to minutes. After a load change, for
example the rate of water production on the cathode side
of the fuel cell increases. The main purpose of the control
strategy is to ensure uninterrupted operation of the fuel cell
stack for changing power demand.

The use of fuzzy methods for system control is dis-
cussed inSection 3. Basic thermodynamic considerations
for the water management of PEM fuel cells can be found
in Section 4. We proceed with an explanation of our ex-
perimental set-up inSection 5. The stack design is also
discussed here. Characteristic diagrams of this fuel cell
stack were plotted at different temperatures (Section 6).
Our fuzzy-based control approach is presented inSection 7
including a detailed explanation of the fuzzy rule base for
the water management. The control approach is tested for
changing load conditions over a time range of minutes.

2. Model-based control strategies

The transient response of a PEM fuel cell to a load change
of the power consumer is a complex phenomenon. A tran-
sient model has to account for the electrochemical reaction
of the fuel and air and multi-phase transport of water and the
gas components. Moreover, heat and charge transport occur
in PEM fuel cells.

Steady-state mathematical models of PEM fuel cells have
been presented by several authors[1–3]. Steady-state mod-
els are not applicable for model-based control strategies be-
cause load changes of the power-consuming device cannot
be taken into account. Moreover, most of the recent models
are computationally expensive and therefore difficult to ap-
ply to the control of fuel cells[4,5]. On the other hand, most
control-oriented models are based on simplified versions of
comprehensive fuel cell models.

A one-dimensional dynamic model has been presented by
Ceraolo et al.[6]. All quantities vary only in the direction
orthogonal to the electrode surfaces. The model accounts
for multi-component gas diffusion in the porous backing
layers, cathode kinetics and double layer charging. The dy-
namic cell response to current steps can be reproduced by
the model. However, cathode flooding cannot be described
by the single-phase model. Therefore, water management
cannot be achieved using this model.

A control-oriented dynamic model of a pressurised fuel
cell system for application in vehicles has been presented
by Pukrushpan et al.[7]. The terminal voltage of the fuel
cell stack is modelled on the basis of the load current and
operating conditions, including cell temperature, air pres-
sure and oxygen partial pressure. Flow equations, mass and
energy balance and electrochemical reactions were used to
create a lumped dynamic model of the fuel cell cathode. The
fuel cell stack characteristics are given as a function of ac-
tivation losses, ohmic losses and concentration losses. The
coefficients in the overvoltage expressions are functions of

temperature, pressure and oxygen partial pressures. How-
ever, the authors assume a 100% humidified membrane in
order to reduce the model‘s complexity. This assumption is
over-simplified as our measurement results show. Drying of
the membrane may well occur in our fuel cell system for
high fan voltages, as shown inSection 6.2.

Another dynamic fuel cell system model for automotive
vehicle simulation and control is described by Boettner et al.
[8]. Voltage-current density relationships were analysed us-
ing the system analysis program Gctool[9]. The effects of
cathode pressure and fuel cell operating temperature on fuel
cell voltage, power density, and exergetic efficiency were
analysed. Moreover, models of auxiliary components re-
quired for fuel cell stack functionality were developed and
integrated into a vehicle performance simulator. Driving cy-
cles and the start-up behaviour of the fuel cell system was
investigated. The focus of the paper is on the optimisation of
the exergetic efficiency, water management is not addressed
there.

Abtahi et al. presented a control strategy of a fuel cell
system based on a pressure regulator[10]. Different pulsing
profiles for the pulsed air source were investigated. The pulse
amplitude, the frequency and the duty cycles were varied
and the impact on the fuel cell power density was studied.
The authors discuss the applicability of fuzzy logic in order
to implement a control strategy. Pulsing of the air pressure
cannot be applied in our fuel cell system because we use
fans for the air supply.

3. Fuzzy control principle

All processes of nature or technology contain more or less
uncertain components or have an uncertain outcome. For
example, many technical processes cannot be characterised
accurately by analytical approaches or can only be described
using vague terms. With the formulation of Fuzzy Theory
by Zadeh, a mathematical method for the formulation of
uncertainty was introduced[11].

Over the past few decades fuzzy methods have proven to
be successful in many industrial and non-industrial applica-
tions. Especially in the field of modelling and controlling
dynamic processes, where traditional methods had been pre-
ferred, fuzzy methods are now favoured. With the advent
of new technologies, practical requirements where classical
methods fail arise increasingly often, either because exact
models are not present or because a closed mathematical
description is not available or too expensive.

By contrast, fuzzy methods make it possible to exploit
available expert knowledge or to extract process informa-
tion from measured data and then to describe the behavior
of even complex processes in a linguistic form. The expert’s
assessments or process description can be abstracted from
technical descriptions in the form ofIF . . . THEN. . . rules
like IF temperature = high AND voltage = very low
THEN air pressure= high [12]. Fuzzy logic enables the
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Fig. 1. Trapezoidal, triangular and singleton membership functionsµX
(α, β, m, m1, m2: description parameters).

description of process models and control in a way very
similar to human thinking.

3.1. Fuzzy set and membership function

In classical (Cantor) set theory, an elementx belongs to
a subsetX (x ∈ X) or it does not (x /∈ X), which can be
expressed by a binary characteristic functionχX : Bx →
{0,1}, whereBx is the base set ofX. By contrast, fuzzy
logic assigns adegreeµX(x) in the interval [0,1] for every
elementx ∈ X thus specifying how wellx matches the
characteristic ofX. µX(x) is called a membership function
µX : Bx → [0,1] and describes a fuzzy (sub-) setX for
a fuzzy variablex. Fuzzy sets can be specified in various
ways: graphically, analytically or numerically by discrete
pairs (singletons)µX(xi)/xi. In practice, simple geometric
functions are mainly used (Fig. 1).

3.2. Fuzzy inference

A fundamental application of fuzzy logic isFuzzy In-
ference or Approximate Reasoning. It describes fuzzy
logical reasoning based on uncertain information, in the
form of IF < premise> THEN < consequent> rules.
The premise part describes the rule antecedent as a fuzzy
logical expression with fuzzy input variablesxi (linguistic
variables), which have been partitioned by one or more
fuzzy setsXi (linguistic terms; here we consider one ap-
propriate fuzzy setXi per variablexi and ruleR) and their
corresponding membership functionsµi, respectively. If
the premise usesn > 1 input variables of not necessarily
the same base setsBxi , they are normally combined by
an n-ary fuzzyAND operator. The consequent part of rule
R describes a fuzzy setY of output variabley over base
setBy:

R : IF x1 = X1 AND . . . ANDxn = Xn THEN y = Y (1)

If the fuzzy AND operator is modelled with the minimum
function MIN (t-norm), then the resulting fuzzy setY ′ is
obtained as a clipped fuzzy setY . Clipping Y 	→ Y ′ ∈
[0 . . . H ] is achieved by thresholding fuzzy setY at level
H specified by the output of theMIN function. Thus, rule
R can be interpreted as ann-ary relationR over the fuzzy

Fig. 2. Example: Linguistic variablex with linguistic terms (fuzzy sets)
low (µl ), medium (µm), high (µh), and fuzzification ofx′

1, x
′
2.

inference pattern:
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′
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One callsH = MIN(µ1(x
′
1), . . . , µn(x

′
n)) the weight or

degree of matchof rule R for the current eventX′ =
(x′

1, . . . , x
′
n) andµi(x′

i) are thefuzzificationsof the actual
and sharp inputsx′

i (Fig. 2).
Using this formal framework, Fuzzy Linguistics defines

elements for the (verbal) description of fuzzy quantities
used to handle vague or uncertain information. Linguis-
tic variables identify the characteristic quantities of a sys-
tem and their definition space is partitioned by linguistic
terms like low, medium and high, defined by the corre-
sponding fuzzy (sub-) setsµl, µm, µh, (Fig. 2). In this way,
linguistic expressions likeIF x1 = medium ANDx2 =
low THEN y = high describe part of a problem solution
(e.g. fuzzy rule-based system,Section 3.3) and fuzzy impli-
cations provide the corresponding computational method.

3.3. Fuzzy rule-based systems

A fuzzy rule-based system consists of a system of infer-
ence rules (implications) and an inference pattern. It pro-
duces sharp or crisp outputsy from crisp inputsx′

i. The
system of inference rules represents a rule base{Rk} with
m rules (k = 1, . . . , m).

Rk : IF x1 = Xk1 AND. . .AND xn = Xkn THEN y = Yk.

(3)

Evaluation of the rule base is carried out byOR-combination
of the individual rulesRk. In practice, the maximum function
MAX is used as an appropriate model for fuzzyORfunctions
(t-conorm):

R1 ∪ . . . ∪ Rm : µres(y) := MAX(µY ′
1(y), . . . , µY ′

m
(y)).

(4)

Thus one gets a resulting fuzzy setµres(y) as the maximum
function of the clipped fuzzy setsµY ′

k
(Eq. (2)). Finally,

a crisp valueyres is achieved by defuzzification ofµres(y)
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(e.g. y-coordinate of centre of gravity ofµres(y)). It was
shown[13], that any continuous non-linear function can be
approximated as exactly as needed with a finite set of fuzzy
variables, sets and rules.

3.4. Fuzzy controller

Fuzzy rule bases (Eq. (3)) are used for modelling or
controlling processes. With respect to the type of conse-
quent part used, one can differentiate between two major
approaches:

1. Mamdani controllers: both the premise and consequent
variables are linguistic variables and characterised by
corresponding linguistic terms (fuzzy sets, membership
functions, (Eq. (3))) [14].

2. Takagi Sugeno Kang (TSK) controllers: Only the premise
variables are linguistic variables with corresponding lin-
guistic terms. The consequent part uses crisp (original)
variables combined in a linear function(5) [15].

A fuzzy rule base{Rk} of TSK type is established by rules
of the following type:

Rk : IF x1 =Xk1 AND x2 = Xk2 . . .AND xn

=Xkn THEN yk = pk0 + pk1x1

+pk2x2 + . . .+ pknxn. (5)

The resulting system output of a TSK fuzzy model is cal-
culated as the average of the crisp rule outputsyk weighted
by the degree of rule matchesHk:

yres =
∑m
i=1Hiyi∑m
i=1Hi

. (6)

This avoids the critical task of defuzzification, and instead
provides an easy and transparent method for manipulating
and calculating the system output. Furthermore, the adap-
tion of a TSK fuzzy model is simplified: After setting up
the linguistic terms for the rule antecedents (e.g. transla-
tion of expert knowledge), the rule base can be constructed
systematically. The rule consequents combine available in-
put variables (must not be part of the premises) in lin-
ear equations with parameterspkl (k = 1, . . . , m; l =
0, . . . , n). These parameterspkl have to be optimised ac-
cording to a quality function, for example. Given measured
process data, the optimisation of parameters can be carried
out by numerical evaluation of a system of linear equa-
tions. In the following, only fuzzy systems of TSK type
are considered for modelling and controlling a fuel cell
stack.

4. Water management of PEM fuel cells

Water management is crucial for undisturbed operation
of PEM fuel cells and for optimisation of the output power.
Flooding of the fuel cell due to excess water production

blocks the gas transport towards the catalyst particles of the
electrodes. On the other hand, drying of the membrane leads
to a poor protonic conductivity of the PEM membrane. Con-
sequently, an increase of resistive losses and a decrease of
output power result from a low hydration state of the mem-
brane[2,16]. Detailed water balance models were presented
by Bernardi[17], Fuller [3], Nguyen and White[18] and
Okada et al.[19].

A simplified water balance calculation can be found in
reference[20]. The relative humidity at the cathode outlet
of a PEM fuel cell is estimated using a simple model. It is
assumed that the flow rate of water through the membrane
due to electro-osmotic drag equals the flow rate due to back
diffusion: the net water drag coefficient can be set to zero
with good accuracy for our test conditions, i.e. moderate
current density values and low stoichiometric values on the
anode side. This was found experimentally by variation of
the membrane type, the humidification of the gases, the hy-
drogen stoichiometry, and the current density of a PEM fuel
cell in reference[21]. All product water is assumed to evap-
orate. Furthermore, dry air at the cathode and the validity of
the ideal gas law is assumed. This yields

Pw = 0.421

λ+ 0.188
Pt, (7)

wherePw is the water vapour pressure at the cathode outlet,
λ the air stoichiometry andPt the total air pressure. The
relative humidityφ of the air at the cathode outlet is obtained
by dividing Eq. (7) by the saturated water vapour pressure
Psat

w (T)

φ = Pw

Psat
w (T)

. (8)

The relative humidityφ is plotted as a function of temper-
ature for an air stoichiometry ofλ = 2 in Fig. 3. It can be
seen that (for the chosen air stoichiometry) there is only a
small temperature range aroundT = 60◦C which allows
water management, i.e. where the air is saturated with water
vapour. The fuel cell tends to be flooded with water at lower
temperatures and it tends to dry out at higher temperatures.
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Fig. 3. Relative humidity of the air at the cathode outlet as a function of
temperature (λ = 2, Pt = 1 atm).
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Fig. 4. Combinations of temperature vs. air stoichiometry forφ = 100%.

Solving Eq. (8) for φ = 100% gives the lines plotted in
Fig. 4. It can be concluded that water management at differ-
ent temperatures can be achieved in principle by controlling
the air stoichiometry. However, there is a lower temperature
limit depending on the amount of air which can be supplied
by the fan according to the model explained above. More-
over, there is a higher temperature limit of approximately
T = 70◦C because the air stoichiometry approaches a value
of 1.
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Fig. 5. The figure shows the experimental set-up including the fuel cell stack. Measurement categories and manipulated variables of the fuzzy control
system are depicted as dashed lines.

5. Fuel cell stack and experimental set-up

A PEM fuel cell stack consisting of 15 cells was used
in this work. The geometric dimensions of the stack are
50 mm× 25 mm× 27 mm, and the active area per cell is
8 cm2. A flow-field with 25 mm long parallel channels on
the cathode side was machined, whereas a meander-shaped
flow-field on the anode side was used. All channels of the
cathode flow-field are opened towards the outside. The bipo-
lar plates were made of SGL Sigracet BMA 5. A com-
mercially available membrane-electrode assembly (MEA)
from Gore (Primea 5510) was used. Gas diffusion layers
of type Toray TGP-H-060 were employed on both the an-
ode and cathode sides. Two fans of 2 cm diameter were
positioned at a distance of approximately 2 cm from the
stack. The fans and the stack were mounted in a hous-
ing. A schematic diagram of the experimental set-up em-
ployed in this work is shown inFig. 5. The electrical ac
impedanceZ of the stack was measured at a frequency of
1 kHz using a Hewlett Packard 4338 B.Z is mainly com-
posed of the protonic resistance of the membrane and the
internal contact resistances of the fuel cell stack[22]. There-
fore,Z is a characteristic variable reflecting the humidifica-
tion conditions of the fuel cell stack. The humidity of the
air was measured at the cathode outlet of the stack using
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a sensor of type Rotronic-Hygrometer C-94. The fuel cell
stack temperature was controlled via a heating sock. The
fuel cell temperature was monitored at two points, in the
centre of the stack and at the cell boundary. The air sto-
ichiometry was controlled by variation of the fan voltage.
The voltage of each cell was monitored separately during the
experiments.

6. Characteristic diagrams

Characteristic diagrams were plotted for constant temper-
ature values of the stack. Data were gathered under manual
control conditions. Qualitative data analysis delivered infor-
mation about typical system behaviour to build up fuzzy
system models, which were then optimised and tested with
quantitative data.

6.1. Lower temperature limit

Fig. 6 shows part of a characteristic diagram of the fuel
cell stack measured at a temperature ofT = 40◦C. The
power load was increased att = 3 min from 3.5 to 7.5 W.
This leads to a dramatic decrease in cell voltage due to water
flooding problems within the cell. Additionally, it can be
seen that the impedance at 1 kHz decreases due to an increase
of the water content of the membrane. The problem can be
partly solved by increasing the air stoichiometry (t > 5 min).
Enough water is removed from the cell to restore the stack
voltage. This leads to a power level of around 9 W (fort ≈
8–12 min). The air stoichiometry was manually increased to
higher values after the cell recovery. This leads to higher
ohmic losses due to the increase of the stack impedance at
1 kHz. This explains the decrease of power level fort >

12 min.

6.2. Higher temperature limit

Part of a characteristic diagram plotted atT = 70◦C is
shown inFig. 7. The impedance values are shifted to higher

Fig. 6. Characteristic diagram atT = 40◦C.

Fig. 7. Characteristic diagram atT = 70◦C.

values compared to the lower temperature case because of
the lower water content of the membrane. As explained in
Section 4, the air stoichiometry atT = 70◦C approaches a
lower limit of one in order to avoid drying of the membrane
(Fig. 4). Therefore, sufficient oxygen supply can only be
ensured at high temperatures with external humidification.
This should be avoided in the investigated miniature fuel cell
due to the expense of the additional peripheral components
of a humidifier.

The 1 kHz impedance is highly dependent on the air sto-
ichiometry at high temperatures as can be seen in the upper
part of Fig. 7. Thus, increasing the air supply clearly leads
to higher ohmic losses at this temperature. However, the
power level increases due to the counteracting effect of a
higher ionic current density produced by the electrochem-
ical reaction at the cathode side. Increasing the air supply
increases the oxygen concentration at the phase bound-
ary between the electronic and the ionic conductors in the
electrodes.

7. Control of the miniature PEM fuel cell stack

The control scheme is shown inFig. 8. The fuel cell stack
impedance at 1 kHzZ1 kHz is the controlled output variable.
Furthermore, feedback from two state variables of the fuel
cell stack is used by the control scheme: The minimum value
Umin of all single-cell voltages and the derivative of the cell
impedance as the difference#Z within the last time interval.

7.1. Fuzzy rule base for cell control of the fuel cell

Three linguistic variables,ZOU, ZNA, andUmin, are used
to set up the fuzzy rule base of the control scheme:

(1) It is concluded from the experimental results of
Sections 6.1 and 6.2that for stable operation, the stack
impedanceZ1 kHz should be kept within a specified
rangeZspec= [Zll . . . Zul]. The impedance range which
is to be chosen for optimum stack operation depends
on the temperature. For example, atT = 60◦C theZ
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Fig. 8. Fuzzy control scheme.

range was found to be 620. . . 680 m$ for the investi-
gated stack.Z1 kHz values higher than 680 m$ lead to
avoidable ohmic losses, whereas the risk of cell flood-
ing increases forZ1 kHz values lower than 620 m$. A
linguistic variableZOU is introduced for this reason,
which rates the deviation of the measured valueZ1 kHz
from the optimum range:

ZOU =




Zll − Z1 kHz |Z1 kHz < Zll

0 |Zll ≤ Z1 kHz ≤ Zul

Zul − Z1 kHz |Z1 kHz > Zul

, (9)

whereZll andZul are the lower and upper limits of the
optimum impedance range, respectively. The linguistic
variableZOU is partitioned into membership functions
(seeSection 3.2) as shown inFig. 9a.

Fig. 9. Membership functions of the linguistic variablesZOU, ZNA, andUmin. The meaning of the labels corresponding to the membership functions is
as follows: NH: negative huge, NB: negative big, NM: negative medium, N: negative, Z: zero, P: positive, PM: positive medium, PB: positive big, PH:
positive huge.

(2) The linguistic variableZNA represents the derivative of
Z1 kHz. It is approximated by the difference quotient

ZNA = Z1 kHz(t2)− Z1 kHz(t1)

t2 − t1
, (10)

wheret1 andt2 are two consecutive time steps at which
the measurement data ofZ1 kHz are taken.ZNA was in-
troduced in order to prevent steps in the controller char-
acteristic. If the impedance leaves its specified window,
the controller reacts according to the temporal difference
of the impedance. Then, the strength of the controller’s
reaction is proportional to this difference. Appropriate
combinations of fuzzy sets ofZOU andZNA are con-
sidered to prevent the controller from tending to oscil-
late. The membership functions of the linguistic variable
ZNA are shown inFig. 9b.
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(3) Flooding of a cell leads to an abrupt drop of the corre-
sponding cell voltage. For example, the critical thresh-
old valueUthresholdfor the single cell voltage was found
to be 0.35 V atT = 60◦C. The problem of flooding can
be solved by a sharp increase of the air stoichiometry in
order to extract more water. Therefore a linguistic vari-
ableUmin is introduced

Umin = min{Ui} − Uthreshold; ∀i ∈ {1, . . . ,15}.
(11)

The membership functions of the linguistic variableUmin
are shown inFig. 9c.

A fuzzy rule base{Rk} of TSK type (Eq. (5)) comprising
28 rules was constructed from this control scheme. The rule
base is divided into three groups:

(1) RulesR1 . . . R18: The antecedent includes combina-
tions of the linguistic variablesZOU andZNA. The fan
voltageUfan is assigned in the consequent part of the
rules. For example, ruleR1 reads:

IF(ZNA=N) AND(ZOU=NH) THEN U ′
fan=0.9Ufan.

(2) RulesR19 − R23: The premise includes the single-cell
voltages. If a single-cell voltage drops below a limiting
value, the fan voltage is increased. For example, rule
R19 reads:

IF(Umin = NH) THEN U ′
fan = 1.2Ufan.

(3) RulesR24 − R28: The antecedent is active if both the
fan voltage reaches its maximum value and a single-cell
voltage drops below the limiting value. In this case, the
controller signals that the power load has to be reduced,

Fig. 10. Test of the control scheme at a fuel cell stack temperature ofT = 60◦C.

otherwise the fuel cell stack will be flooded with water.
For example, ruleR24 reads:

IF(Umin=NH) AND(Ufan=5) THEN load′= 0.2load.

7.2. Test of fuel cell stack control

The fuzzy controller was tested at a temperature ofT =
60◦C as shown inFig. 10.Zll = 620 m$ andZul = 680 m$
were chosen as lower and upper threshold values for the def-
inition of Zspec. The load was increased manually at times
t1, t4 andt6. The water production rate increased after an in-
crease of the power load, leading to an increase of the water
content of the membrane. Accordingly, the proton conduc-
tivity improves, which can be seen in the decrease ofZ. The
fuzzy controller reacts with an increase of fan voltage after
timest1, t4 andt6 becauseZ drops below the lower threshold
valueZll . The membrane tends to become too dry at times
t2, t3 and t5, which is reflected by the increase ofZ1 kHz
above the upper threshold valueZul. As a consequence, the
fuzzy controller reacts with a decrease of fan voltage and
the impedance decreases within several seconds.

The fuel cell stack can be controlled atT = 60◦C up to
a power level of 7.5 W (Fig. 10). A further increase of the
power load leads to a drop in at least one single-cell voltage:
In this case, rulesR24 . . . R28 of the fuzzy rule base become
active. If the fuel cell stack is operated atT = 65◦C, the
impedance threshold values have to be increased. Threshold
values were chosen forZspec= [820 . . . 940] m$ according
to the lower water content of the membrane compared to the
case withT = 60◦C. The maximum power level for which
the fuel cell stack can be controlled was found to be 8 W
at T = 65◦C. A decrease of the maximum power level is
observed for higher temperatures.
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8. Conclusion

We demonstrated the applicability of fuzzy methods for
controlling miniature PEM fuel cells. The fuzzy rule base
consists of empirically derived relations. This offers the ad-
vantage that water management is achieved in an efficient
way. Flooding problems of the PEM fuel cell stack are pre-
vented by monitoring the minimum single cell voltage. Dry-
ing of the PEM membrane can be avoided by monitoring the
ac impedance of the fuel cell stack. A control-oriented math-
ematical model would have to take the dynamic two-phase
problem of water transport in the PEM stack into account.
The complexity of a rigorous, mathematical solution of this
problem cannot be handled on-line using state-of-the-art mi-
crocontrollers. On the other hand, the fuel cell characteristics
depend strongly on temperature, which is not accounted for
by our present implementation of the fuzzy rule base. This
temperature dependence can be introduced by simple fuzzy
models with appropriate transfer characteristics. Therefore,
water and thermal management can in principle be achieved
by applying fuzzy logic. The cost efficiency of our control
principle is yet to be demonstrated for miniature PEM fuel
cells.
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